Abstract
As the apparent intelligence of artificial neural networks (ANNs) advances, they are increasingly likened to the functional networks and information processing capabilities of the human brain. Such comparisons have typically focused on particular modalities, such as vision or language. The next frontier is to use the latest advances in ANNs to design and investigate scalable models of higher-level cognitive processes, such as conscious information access, which have historically lacked concrete and specific hypotheses for scientific evaluation. In this work, we propose and then empirically assess an embodied agent with a structure based on global workspace theory (GWT) as specified in the recently proposed "indicator properties" of consciousness. In contrast to prior works on GWT which utilized single modalities, our agent is trained to navigate 3D environments based on realistic audiovisual inputs. We find that the global workspace architecture performs better and more robustly at smaller working memory sizes, as compared to a standard recurrent architecture. Beyond performance, we perform a series of analyses on the learned representations of our architecture and share findings that point to task complexity and regularization being essential for feature learning and the development of meaningful attentional patterns within the workspace.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.