Abstract
BackgroundIn the rehabilitation of postoperative facial palsy, physical therapy is of paramount importance. However, in the early rehabilitation phase, voluntary movements are often limited, and thus, the motivation of patients is impacted. In these situations, biofeedback of facial electromyographic (EMG) signals enables the visual representation of the rehabilitation progress, even without apparent facial movements. In the present study, we designed and evaluated a custom-made EMG biofeedback system enabling cost-effective facial rehabilitation.MethodsThis prospective study describes a custom-made EMG system, consisting of a microcontroller board and muscle sensors, which was used to record the EMG of frontal and zygomatic facial muscles during frowning and smiling. First, the mean EMG amplitudes and movement onset detection rates (ACC) achieved with the custom-made EMG system were compared with a commercial EMG device in 12 healthy subjects. Subsequently, the custom-made device was applied to 12 patients with and without postoperative facial paresis after neurosurgical intervention. Here, the ratio [laterality index (LI)] between the mean EMG amplitude of the healthy and affected side was calculated and related to the facial function as measured by the House and Brackmann scale (H&B) ranging from 1 (normal) to 6 (total paralysis).ResultsIn healthy subjects, a good correlation was measured between the mean EMG amplitudes of the custom-made and commercial EMG device for both frontal (r = 0.84, p = 0.001) and zygomatic muscles (r = 0.8, p = 0.002). In patients, the LI of the frontal and zygomatic muscles correlated significantly with the H&B (r = −0.83, p = 0.001 and r = −0.65, p = 0.023). The ACC of the custom-made EMG system varied between 65 and 79% depending on the recorded muscle and cohort.ConclusionThe present study demonstrates a good application potential of our custom-made EMG biofeedback device to detect facial EMG activity in healthy subjects as well as patients with facial palsies. There is a correlation between the electrophysiological measurements and the clinical outcome. Such a device might enable cost-efficient home-based facial EMG biofeedback. However, movement detection accuracy should be improved in future studies to reach ranges of commercial devices.
Highlights
IntroductionNeurorehabilitation of peripheral facial palsy (e.g., after neurosurgical procedures) is challenging, and the efficiency of the hitherto applied rehabilitation techniques is still under debate (Shafshak, 2006; Pereira et al, 2011; Teixeira et al, 2011; Baricich et al, 2012)
Neurorehabilitation of peripheral facial palsy is challenging, and the efficiency of the hitherto applied rehabilitation techniques is still under debate (Shafshak, 2006; Pereira et al, 2011; Teixeira et al, 2011; Baricich et al, 2012)
Continuous feedback of electromyographic (EMG) muscle activity enables visual representation of the rehabilitation progress, even without apparent gross facial movements. Such biofeedback-based neurorehabilitation has been shown to maintain the motivation of the patients in the context of stroke rehabilitation (Naros et al, 2016; Tamburella et al, 2019)
Summary
Neurorehabilitation of peripheral facial palsy (e.g., after neurosurgical procedures) is challenging, and the efficiency of the hitherto applied rehabilitation techniques is still under debate (Shafshak, 2006; Pereira et al, 2011; Teixeira et al, 2011; Baricich et al, 2012). Continuous feedback of electromyographic (EMG) muscle activity enables visual representation of the rehabilitation progress, even without apparent gross facial movements Such biofeedback-based neurorehabilitation has been shown to maintain the motivation of the patients in the context of stroke rehabilitation (Naros et al, 2016; Tamburella et al, 2019). The validity of previous studies on EMG biofeedback training is limited by small patient cohorts (
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.