Abstract

Focused ultrasound surgery (FUS) is a clinical method for treating benign prostatic hyperplasia (BPH) in which tissue is noninvasively necrosed by elevating the temperature at the focal point above 60<th>°C using short sonications. With 1.75-dimensional (1.75-D) arrays, the power and phase to the individual elements can be controlled electronically for focusing and steering. This research describes the design, construction and evaluation of a 1.75-D ultrasound phased array to be used in the treatment of benign prostatic hyperplasia. The array was designed with a steering angle of ±13.5 deg in the transverse direction, and can move the focus in three parallel planes in the longitudinal direction with a relatively large focus size. A piezoelectric ceramic (PZT-8) was used as the material of the transducer and two matching layers were built for maximum acoustic power transmission to tissue. To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated fields. In vivo experiments were performed to verify the capability of the transducer to ablate tissue using short sonications. [Work supported by the Whitaker Foundation and the Department of Defense Congressionally Directed Medical Prostate Cancer Research Program.]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call