Abstract
SummaryBioproduction of optical pure (R)‐citronellal from (E/Z)‐citral at high substrate loading remains challenging. Low catalytic efficiency of (R)‐stereoselective ene reductases towards crude citral mixture is one of the major bottlenecks. Herein, a structure‐based engineering strategy was adopted to enhance the catalytic efficiency and stereoselectivity of an ene reductase (OYE2p) from Saccharomyces cerevisiae YJM1341 towards (E/Z)‐citral. On basis of homologous modelling, molecular docking analysis and alanine scanning at the binding pocket of OYE2p, a mutant Y84A was obtained with simultaneous increase in catalytic efficiency and stereoselectivity. Furthermore, site‐saturation mutagenesis of Y84 yielded seven mutants with improved activity and stereoselectivity in the (E/Z)‐citral reduction. Among them, the variant Y84V exhibited an 18.3% and 71.3% rise in catalytic efficiency (k cat/K m) for (Z)‐citral and (E)‐citral respectively. Meanwhile, the stereoselectivity of Y84V was improved from 89.2% to 98.0% in the reduction in (E/Z)‐citral. The docking analysis and molecular dynamics simulation of OYE2p and its variants revealed that the substitution Y84V enabled (E)‐citral and (Z)‐citral to bind with a smaller distance to the key hydrogen donors at a modified (R)‐selective binding mode. The variant Y84V was then co‐expressed with glucose dehydrogenase from Bacillus megaterium in E. coli D4, in which competing prim‐alcohol dehydrogenase genes were deleted to prevent the undesired reduction in the aldehyde moiety of citral and citronellal. Employing this biocatalyst, 106 g l−1 (E/Z)‐citral was completely converted into (R)‐citronellal with 95.4% ee value and a high space‐time yield of 121.6 g l−1 day−1. The work highlights the synthetic potential of Y84V, which enabled the highest productivity of (R)‐citronellal from (E/Z)‐citral in high enantiopurity so far.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.