Abstract

The multi-stack fuel cell system (MFCS) could be widely used in high-power application scenarios because of its higher efficiency, stronger robustness and longer life. For a specific application scenario, an integrated air supply device is designed to meet the air demand of each fuel cell stack by maintaining the air pressure in the buffer. Under different buffer pressure control strategies (for example, constant pressure control and hybrid control), the maximum electrical power and electrical power consumption of the integrated air supply device for the MFCS are analyzed. The results show that compared with the single-stack scheme, the integrated air supply device can significantly reduce the maximum electric power and the electric power consumption. Using the 140 kW, 210 kW, and 280 kW MFCS as examples, with the increase of the power level of the fuel cell system, the benefits of the designed integrated air supply device become increasingly apparent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call