Abstract

Chemical absorption using amine solvents is the most commercially recognized technology to capture CO2 from the SMR-based hydrogen production plant. Most studies focused on the use of PSA inlet or tail gas streams to remove CO2 using MDEA solvent which is limited to about 60% of total plant CO2 emitted. Whilst the capture of a flue gas stream has been reported via the MEA solvent to remove 90% CO2 yet at relatively higher costs. A systematic investigation is required to identify the cost-effective use of the absorption processes when multiple positions are available for CO2 capture. In this study, multiple cases of the CO2 absorption process have been evaluated using MEA or MDEA solvents. Especially, a novel design for the simultaneous removal of CO2 from the flue gas of a reformer and the PSA inlet gas stream is proposed and its techno-economic benefits are examined. For this purpose, the rate-based model has been implemented in the MATLAB environment to simulate the absorption process, whereas the solvent regeneration energy and the capital and operating costs of the main equipment have been estimated using the correlations taken from the literature. The new system based on the sequential reuse of MEA solvent for two streams is found to be the most economic process to remove 99% of total plant CO2. The annualized cost of the proposed system is found 17.9% less in comparison to the best relevant conventional studied system of simultaneously removing CO2 from the PSA inlet and reformer flue gas streams using MEA and MDEA solvents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call