Abstract

Aiming at the problem that the damping coefficient of the traditional hydro-pneumatic spring cannot be adjusted in real-time, the magnetorheological (MR) damping technology was introduced into the traditional hydro-pneumatic spring with single gas chamber. A new shear-valve mode MR hydro-pneumatic spring was proposed. And its dynamic performance was analyzed based on multi-physical coupling simulation and mechanical property test. Firstly, a structural scheme of MR hydro-pneumatic suspension was proposed to ensure the original height adjustment function based on the working principle of traditional hydro-pneumatic suspension with single gas chamber. Secondly, based on the design requirements, the parameter of MR hydro-pneumatic spring damping structure was designed by using MR damper design method. Thirdly, the multi-physical coupling dynamic performance of the MR hydro-pneumatic spring damping structure was analyzed based on the electromagnetic field analysis theory, flow field analysis theory and thermal field analysis theory. The analysis results showed that the designed MR hydro-pneumatic spring has reasonable magnetic circuit structure and excellent working performance. Then, the mechanical properties of MR hydro-pneumatic spring were tested. The results showed that the maximum damping force can reach 20 kN, and the dynamic adjustable multiple can reach 6.4 times. It has good controllability and meets the design requirements. Finally, a nonlinear model of MR hydro-pneumatic spring was established based on the elastic force calculation model of the gas and the Bouc–Wen model. The simulation results of the established model agree well with the experimental results, which can accurately describe the dynamic properties of the hydro-pneumatic spring. The proposed design and modeling method of the MR hydro-pneumatic spring can provide a theoretical basis for the related vibration damping devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call