Abstract

Spinal fusion is a commonly used technique to treat acute and chronic spinal diseases by fusion of the adjacent vertebrae, aiming at achieving stability and eliminating the mobility of the objective segment. While bone autografts and allografts have been conventionally used for spinal fusion, limitations persist in achieving optimization of both good osteoinductive capacity and mechanical stability. In this study, additively manufactured Zn-Li scaffolds were developed and evaluated for their potential in spinal fusion. First, three scaffold structures (BCC, Diamond, and Gyroid) were designed and verified in vitro. Due to the smooth transition surfaces and uniform degradation behavior, the Gyroid Zn-Li scaffold demonstrated mechanical integrity during degradation and enhanced cellular proliferation compared to the other two scaffolds. Subsequently, Zn-Li scaffolds (Gyroid) were selected for posterolateral lumbar fusion (L4/L5) in rabbits. Following 12 weeks of implantation, the Zn-Li scaffolds demonstrated a moderate biodegradation rate and satisfactory biocompatibility. Compared to bone allografts, the Zn-Li scaffolds significantly improved osseointegration adjacent to the transverse processes, which led to enhanced segmental stability of the fused vertebrae post posterolateral lumbar fusion. Overall, the results show that the biodegradable Zn-Li scaffold holds substantial potential as the next-generation graft for spinal fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.