Abstract

The aim of this study was to develop sustained-release glyburide-loaded silica nanoparticles. Silica nanoparticles were synthesized by the sol–gel method using tetra-ethyl ortho-silane as a precursor. Glyburide was successfully entrapped in synthesized silica nanoparticles. To identify the effect of independent variables (concentration of silica and concentration of glyburide) on encapsulation efficiency and drug release (dependent variables), 32 (three level-two factors) response surface methodology was employed. Silica nanoparticles and glyburide-loaded silica nanoparticles were characterized by scanning electron microscopy, BET surface area, X-ray diffraction and Fourier transformed infrared spectroscopy. The optimum values of encapsulation efficiency and drug release were 70.21 and 87.8% over 24 h, respectively; these values agree well with predicted values obtained by response surface methodology. Glyburide-loaded silica nanoparticles were successfully prepared without any incompatibility and seem to be promising for sustained-release drug delivery application and better patient compliance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call