Abstract

In this paper, the semi-active suspension in railway vehicles based on the controlled magnetorheological (MR) fluid dampers is examined, and compared with the semi-active low and semi-active high suspension systems to enhance the running safety and ride quality for a high-speed rail vehicle. Predictive model controllers are used as system controllers to determine the desired damping forces for front and rear bogie frame with force track-ability. A 28 degree of freedom (DoF) mathematical model of the rail vehicle is formulated using nonlinear vehicle suspension and nonlinear heuristic creep model. The MR model of Ali and Ramaswamy is formulated to characterize the behavior of the MR damper. The simulation result is validated using the experimental results. Four different suspension strategies are proposed with MR damper, i.e. passive, semi-active low, semi-active high and semi-active smart controller based on predictive model controller. A comparison indicates that the semi-active controller gives the optimum for comfort vibration actuation and improves the ride quality and it has little influence on derailment quotients, offload factors, as a result, it will not endanger the running safety of rail vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.