Abstract

The study proposes a novel hardware-based architecture of the reconfigurable embedded system for the multi-channel immersion ultrasonic system. It provides the addressing-based analogue multiplexing scheme, which requires only one data acquisition unit and common on-chip storage for the multi-channel imaging system. It also provides unique channel reconfigurable facility to the user to modify the number of channels (up to 256 for pulse-echo and 512 for transmit-receive mode by installing only the partial front-end hardware (pulser, pre-amplifier) and without modifying the remaining data acquisition hardware (common-amplifier, digitiser) and back-end embedded system. The developed system further supports dynamic on-line reconfiguration of the analogue front-end hardware, real-time hardware-based data processing, and data transfer operation. The authors have implemented the addressing-based reconfigurable architecture of the coherent averaging for noise reduction. For the experimentation, the complete four-channel ultrasonic imaging system for immersion testing has been designed, developed, and evaluated in the laboratory. Furthermore, this study describes the capability of the proposed system by performing multi-channel real-time data acquisition, hardware-based coherent averaging, channel multiplexing-demultiplexing, reconfigurable control, and software-based post-processing. Here, they present the performance evaluation of the developed multi-channel system by carrying out the B-scan and C-scan image acquisition of the water-immersed mechanical components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.