Abstract
A new precision finishing process for nanofinishing of 3D surfaces using ball end MR finishing tool is developed. The newly developed finishing process is used to finish ferromagnetic as well as nonmagnetic materials of 3D shapes using specially prepared magnetorheological polishing (MRP) fluid. The existing MR finishing devices and methods are likely to incapable of finish 3D intricate surfaces such as grooves in workpiece or complex in-depth profiles in the mold due to restriction on relative movement of finishing medium and workpiece. In this newly developed finishing device, the ball end MR finishing tool is used for finishing different kinds of 3D surfaces, as there is no limitation on relative movement of finishing medium and workpiece. It can finish the work surfaces similarly as the machining of 3D surfaces by CNC ball end milling cutter and open a new era of its applications in future. The developed process may have its potential applications in aerospace, automotive and molds manufacturing industries. A computer controlled experimental setup is designed and manufactured to study the process characteristics and performance. The magnetostatic simulations were done on ferromagnetic as well as nonferromagnetic materials of 3D surfaces to observe the ball end shape of magnetic field at the tip of the MR finishing tool. The experiments were performed on flat EN31 and groove surface of copper workpieces in the developed MR finishing setup to study the effect of finishing time on final surface roughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.