Abstract

This research explores the use of Q-Learning for real-time swarm (Q-RTS) multi-agent reinforcement learning (MARL) algorithm for robotic applications. This study investigates the efficacy of Q-RTS in the reducing convergence time to a satisfactory movement policy through the successful implementation of four and eight trained agents. Q-RTS has been shown to significantly reduce search time in terms of training iterations, from almost a million iterations with one agent to 650,000 iterations with four agents and 500,000 iterations with eight agents. The scalability of the algorithm was addressed by testing it on several agents’ configurations. A central focus was placed on the design of a sophisticated reward function, considering various postures of the agents and their critical role in optimizing the Q-learning algorithm. Additionally, this study delved into the robustness of trained agents, revealing their ability to adapt to dynamic environmental changes. The findings have broad implications for improving the efficiency and adaptability of robotic systems in various applications such as IoT and embedded systems. The algorithm was tested and implemented using the Georgia Tech Robotarium platform, showing its feasibility for the above-mentioned applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call