Abstract

Being amorphous, bulk metallic glasses (BMGs) exhibit superior properties compared to their crystalline alloy counterparts. Amorphous materials are preferred for their excellent mechanical and degradation behavior. Among the various elemental combinations, MgZnCa has shown the most promising results, as evidenced by the literature. However, the maximum achievable size of the metallic glasses remains a bottleneck. The current work aims to address this challenge and achieve it splendidly with a systematic methodology by developing larger diameter MgZnCa BMGs through vacuum induction casting using a specially designed copper mold. The optimal composition was formalized for glass formation of the Mg65Zn31Ca4 system using the CALPHAD technique. As a result, a 6.5 mm diameter glassy alloy was successfully obtained. The XRD and TEM analysis experiments demonstrated a perfect amorphous structure of the developed sample. The anti-corrosion properties of the as-cast glass increased, followed by enhancement in the yield strength and hardness in contrast to the properties of the human bone. Furthermore, the surface wettability analysis showed an adequate surface obtained to promote fibroblast adhesion. In conclusion, the current work represents a notable progress in the fabrication of larger-diameter MgZnCa BMG for biomedical applications, considering that the biggest diameter ever reported in the MgZnCa system was more than a decade ago.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.