Abstract

This study demonstrates the integrated approach based upon texturing and acceptor doping for realizing a high-power piezoelectric ceramic with combined soft and hard properties. The textured Mn-doped 0.24 Pb(In1/2Nb1/2)O3-0.42 Pb(Mg1/3Nb2/3)O3-0.34 PbTiO3 (PIN-PMN-PT) ceramic exhibits enhanced piezoelectric coefficient d33 and electromechanical coupling factor k31 in comparison with random counterpart. This enhanced piezoelectric response originates from the combined intrinsic high piezoelectric properties of <001>-oriented grains, and reduced energy barrier for polarization rotation in textured ceramics. The BaTiO3 (BT) template in textured ceramics increases the tetragonality degree which results in improved coercive field Ec but decreased mechanical quality factor Qm in comparison with random counterpart. The decreased Qm values of textured ceramics are related to the crystallographic dependence of Qm and the enhanced domain mobility due to the existence of small size domains. The textured ceramic with 2 vol.% BT content exhibited an excellent combination of soft and hard piezoelectric properties, measured to be: d33 = 517 pC/N, Qm = 1147, Ec = 10.0 kV/cm, and tan δ = 0.49%, which is highly promising for high power piezoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.