Abstract

DC microgrids have been quite popular in recent times. The operational challenges like control and energy management of the renewable-driven standalone DC microgrids have been an interest of research. This paper presents a bidirectional quasi Z-source DC-DC converter (BQZSDC). This converter topology has been developed based on a conventional buck-boost type bidirectional converter, and it interfaces the storage system and the common DC bus. The challenge, however, lies in effectively managing the uncertain renewable energy sources and the storage system and catering for the loads simultaneously. An effective control strategy is needed for that energy management and to achieve various microgrid objectives. This paper deals with one such effective control strategy implemented for BQZSDC. That is, the fixed-frequency double-integral sliding mode control (FF-DISMC) controls the converter to regulate the DC bus voltage and battery current. A detailed analysis of the controller is conducted, and its performance is evaluated for both charging (buck) and discharging (boost) modes. Simulations have been performed in MATLAB, showing that the controller performs satisfactorily in achieving the objectives of voltage regulation and battery current regulation. Finally, the performance of the proposed controller is validated with the hardware setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.