Abstract

Periodontal disease disturbs the supportive tissues around the teeth such as connective tissue, gingival tissue, periodontal ligaments and alveolar bone. Previously, treatment of periodontitis was embattled by repopulating the affected site with cells that has capacity to regenerate damaged tissue by endorsing the perception of guided tissue regeneration but it entails additional surgery owing to non-biodegradability. Biodegradable polymeric nanofibrous scaffold imitating extracellular matrix (ECM) delivering functionalized nanoparticles loaded with therapeutic drug have the ability to support cellular functions thereby enhancing regeneration. Present study explores novel amine functionalized zirconia nanoparticle loaded curcumin incorporated SPEEK nanofibrous scaffolds to address periodontal regeneration. Zirconia - crown of dental therapeutics, its amine functionalization further enhanced the strength and cyto-compatibility. Carbon-Silica NMR (59.9 and 69.8 ppm), FT-IR (3426 cm−1), EDAX and XRD (28.9°, 31.6° and 38.2° pertaining to [−1 1 1], [1 1 1] and [1 2 0] planes) analysis confirmed the effective functionalization of the zirconia nanoparticle with the amine group. Electrospinning was carried out at a voltage of 20 kV and flow rate of 0.05 ml/h. Fabricated nanofibers were highly dense, porous with interconnected fibrous structures that bio-mimic ECM. They exhibited an average diameter of 187 ± 2 nm (SPEEK), 192 ± 2 nm (SPEEK + NH2–ZrO2), and 256 ± 17 nm (SPEEK + NH2–ZrO2+Cur). Extensively discovered anti-bacterial traits of curcumin supplemented the advantage for the treatment of periodontitis. Incorporated materials improve the physico-chemical, mechanical and biological characteristics of nanofibers. FT-IR, EDAX and XRD analysis of the fabricated nanofibrous scaffold demonstrated the effective incorporation of aminated zirconia loaded curcumin. Results of cyto-compatibility analysis of SPEEK + NH2–ZrO2+Cur nanofibrous scaffold depicted a cell viability of 100 ± 1.62%. Results of anti-bacterial assay with zone of inhibition was 6.5 ± 0.5 mm (SPEEK), 7.5 ± 1 mm (SPEEK + NH2–ZrO2), and 8 ± 1 mm (SPEEK + NH2–ZrO2+Cur). Thus, the fabricated bio-material is cyto-compatible, non-toxic and effective against pathogens exploiting higher potential for periodontal regeneration applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.