Abstract

Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.