Abstract

Abstract In this paper, a cross dipole antenna is proposed, designed, and developed for satellite communication applications. The design incorporates an alternative feeding mechanism of the coaxial/probe feeding technique with balun. The primary objective of this paper is to develop the high gain antenna with an array configuration for satellite communication. The performance parameters of an antenna such as return loss, radiation pattern, gain and directivity are investigated for cross dipole antenna and 1 × 2, 1 × 4 array configurations. It operates for Ku band (12–18 GHz) and produces a high gain with low return loss. The proposed antenna has five useful bands and exhibits a peak directive gain of 13.21 dBi at 12.4 GHz with a bandwidth of 0.89 GHz. Additional bands are also offering a gain of 11.23 dBi with a bandwidth of 0.849 GHz at 10.6 GHz, 6.59 dBi with a bandwidth of 0.6 GHz at 11.5 GHz, 12.13 dBi with a bandwidth of 1.37 GHz at 14.2 GHz and 10.47 dBi with a bandwidth of 1.3 GHz at 15.8 GHz. The cross dipole antenna is analyzed for 1 × 2, 1 × 4 array configuration in order to improve the overall gain. The proposed antenna is fabricated on FR4 substrate with a dielectric constant of 4.4 and loss tangent (tan δ) of 0.007 with the thickness of 1.6 mm. The size of the proposed antenna is 72 × 84 mm. The proposed antenna meets the requirements of an antenna which is operating at Ku band; hence, it is found to be suitable for real time applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.