Abstract

An approach for building a real-time simulation and testing platform for a novel seamless two-speed automated manual transmission (AMT) for electric vehicles (EVs) is proposed and experimentally evaluated. First, the structure of the AMT and the dynamic model of an EV powertrain system equipped with the AMT are presented. Then, according to the testing requirements, a prototype of the AMT, hardware components and software system of the platform are designed. Unlike a real-time transmission test bench, of which the real-time simulation and control system (RSCS) is built based on a dedicated simulator, the RSCS of the platform is built based on a standard desktop personal computer (PC) by using a useful and low-cost solution from matlab/simulink®. Additionally, a simulation model of EV, which is equipped with the AMT and is more suitable for hardware-in-the-loop (HIL) simulation, has been developed. In particular, for conducting various dynamic mechanical tests, the platform is combined with induction motors (IMs), which are adopted with direct torque control (DTC) technique to emulate the dynamic driving conditions of the transmission. The designed platform can be used for different test techniques, including rapid simulation, rapid control prototyping, HIL simulation as well as dynamic mechanical tests. The work expands the capability of the platform and makes the test conditions become closer to reality. Simulation and experimental results indicate that the platform responds well to the real-time dynamic requirements, and it is very useful for developing the proposed transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.