Abstract

This paper presents the design, simulation, fabrication, and testing processes of a new microelectromechanical systems (MEMS) microgripper, which integrates an electrostatic actuator and a capacitive force sensor. One advantage of the presented gripper is that the gripping force and interaction force in two orthogonal directions can be, respectively, detected by a single force sensor. The whole gripper structure consists of the left actuating part and right sensing part. It owns a simple structure and compact footprint. The actuator and sensor are fixed and linearly guided by four leaf flexures, respectively. The left arm of the gripper is driven through a lever amplification mechanism. By this structure, the displacement from the electrostatic actuator is transmitted and enlarged at the gripper tip. The right arm of the gripper is designed to detect the gripping and interaction forces using a capacitive sensor. The MEMS gripper is manufactured by SOIMUMPs process. The performance of the designed gripper is verified by conducting finite element analysis (FEA) simulation and experimental studies. Moreover, the demonstration of biocellulose gripping confirms the feasibility of the developed gripper device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.