Abstract

AbstractTeleoperation is entering a new era. Despite still in use today in the nuclear industry, simple purely mechanical or robotic 6 degrees of freedom (DoF) master-slave systems equipped with bi-digital grippers on the slave side and simple handles on the master side are not able to answer the challenge of remote manipulation at scale. These historical remotely controlled robotic solutions, inherited from mechanical master slave systems developed decades ago for research activities performed in gloveboxes and hot cells, allow operators an efficient and safe access to dangerous materials at distance. They are adapted when the variety of the to-be-manipulated objects remains limited, especially when these objects can be adapted for remote manipulation. They are however no more sufficient when one has to handle a much higher quantity of much more diverse objects, as it is typically the case when processing nuclear waste accumulated in huge quantities over time and/or produced at the occasion of nuclear power plants’ dismantling operations. The quantity and diversity of nuclear waste require more efficient and versatile systems. To answer this challenge and increase the operators’ productivity, we developed a complete bimanual teleoperation setup able to perform remote dexterous manipulation tasks. This article describes the hardware and software architecture of this platform, which is notably composed of a novel dexterous master-slave system combining a tri-digital master glove and a remotely controlled three fingers gripper. Both make use of highly backdrivable actuators and transmissions, and the proposed coupling schemes allow intuitive control of various grasp types. As a result, the proposed setup enables dexterous and force-sensitive control, and it is well-suited for high fidelity force-reflection tele-presence.KeywordsTeleoperationDexterous manipulationMulti-finger gripperHand exoskeletonForce feedback

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.