Abstract
As a significant subset of unmanned underwater vehicles (UUVs), autonomous underwater vehicles (AUVs) possess the capability to autonomously execute tasks. Characterized by its flexibility, cost-effectiveness, extensive operational range, and robust environmental adaptability, AUV has emerged as the primary technological apparatus for deep-sea exploration and research. In this paper, we present the design of a 10,000 m class AUV equipped with capabilities such as fixed-depth navigation, regional autonomous cruising, full-depth video recording, and temperature and salinity profiling. Initially, we outline the comprehensive design of the AUV, detailing its structural configuration, system components, functional module arrangement, and operational principles. Subsequently, we compute the hydrodynamic parameters using a spatial kinematics model. Finally, the AUV designed in this paper is tested for its functions and performance, such as fixed-depth sailing, maximum speed, and maximum diving depth, and its reliability and practicability are verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.