Abstract

Soft robots have often been proposed for medical applications, creating human-friendly machines, and dedicated subject operation, and the pneumatic actuator is a representative example of such a robot. Plants, with their hingeless architecture, can take advantage of morphology to achieve a predetermined deformation. To improve the modes of motion, two pneumatic actuators that mimic the principles of the plants (the birds-of-paradise plant and the waterwheel plant) were designed, simulated, and tested using physical models in this study. The most common deformation pattern of the pneumatic actuator, bending deformation, was utilized and hingeless structures based on the plants were fabricated for a more complex motion of the lobes. Here, an ABP (actuator inspired by the birds-of-paradise plant) could bend its midrib downward to open the lobes, but an AWP (actuator inspired by the waterwheel plant) could bend its midrib upward to open the two lobes. In both the computational and physical models, the associated movements of the midrib and lobes could be observed and measured. As it lacks multiple parts that have to be assembled using joints, the actuator would be simpler to fabricate, have a variety of deformation modes, and be applicable in more fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.