Abstract

Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA), butyl acrylate (BA), methacrylic acid (MAA), styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers, and the influences of MMA content used in the core preparation on polymerization, particle size and morphology were investigated by transmission electron microscopy, dynamic light scattering and conductometric titration. The results showed that the seeded emulsion polymerization could be carried out smoothly using “starved monomer feeding process” when MAA content in the core preparation was equal to or less than 24 wt%, and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content. When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell, well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call