Abstract

A magnetorheological vibration isolation platform (MRVIP) with cubic structure Stewart mechanism was designed and an effective semiactive control strategy was proposed based on its inverse kinematics characteristics for the helicopter to effectively reduce the vibration of the helicopter rotor transmitted from the main reducer to the fuselage. Firstly, the structural scheme of the helicopter main reducer MRVIP was proposed. Secondly, the MR damper was manufactured, and the dynamic model was established based on the mechanical test. Thirdly, according to the design requirements of the VIP, the overall structure of the MRVIP was designed. Fourthly, the dynamic simulation model of the MRVIP was established by using 3D drawing software and SimMechanics software. And the vibration characteristics of each direction were analyzed. Finally, a PID-Fuzzy semiactive controller was designed based on the characteristics of the MR damper to improve the performance of the MRVIP. The numerical analysis results showed that compared with the passive MRVIP and the MRVIP based on fuzzy control, the MRVIP with PID-Fuzzy control has the best vibration isolation performance and can effectively reduce the vibration of 6-DOF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.