Abstract

This paper considers the design and control of a reactive distillation column in which one reactant is consumed and two products are formed (A⇌B+C). The volatilities are α B > α A > α C , i.e. the reactant is intermediate boiling between the two products. The metathesis of 2-pentene is considered as the demonstrative example. The column has a single feed of the intermediate boiling reactant. The distillate contains mostly light component and the bottoms mostly heavy. Three designs are considered: the base case (low-conversion/low-pressure), a low-conversion/high-pressure case and a high-conversion/high-pressure case. The base design is obtained from the literature, and the other two steady-state designs are optimized with respect to the total annual cost. All the designs are found to be openloop stable. Five control structures are studied for the base design. Then the best two structures are applied to the remaining two designs. This category of reactive distillation exhibits less challenging problems than other categories since it uses a single feed, which eliminates the need for the control structure to perfectly balance two fresh feeds. Simulation results demonstrate that effective dynamic control is provided by a control structure that uses two temperatures to maintain the purities of both product streams. No internal composition measurement is required. This structure is found to be robust and stable and rejects loads and tracks setpoints very well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call