Abstract

Several exoskeletons with various configurations and degrees-of-freedoms (DOFs) have been introduced in the literature, but not many have addressed the optimal selection of the mechanism's DOFs. In the proposed system a semi-passive toe joint is introduced to achieve several advantages. The performance of the proposed novel passive toe joint is evaluated experimentally. In addition, the semi-passive abduction/adduction DOFs in the hip joint and eversion/inversion DOFs in ankle joint is proposed to facilitate turning while providing more comfort during normal walking. The effect of passive DoFs existence on the user comfortability is studied with the aid of three kinematic indices. In the proposed mechanism, a set of compact, low-backlash rotary series elastic actuators are designed and incorporated to actuate the joints. A novel torque control is also introduced and evaluated experimentally. Results show good performance of the robot in zero-force control and impedance control during swing phase of motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.