Abstract

This article presents the mechanical design and locomotion control of a novel tuna-inspired robot system for both fast swimming and high maneuverability. Mechanically, the developed robotic fish named CasiTuna comprises three important parts, i.e., an innovative two-motor-actuated propulsive mechanism, a buoyancy adjustment structure, and a pair of pectoral fins. Unlike most robotic fishes' multiple concatenated links-based propulsive mechanism, CasiTuna's two-motor-actuated one places both motors in the anterior body and utilizes a transmission system to achieve tuna-like lateral undulations. Meanwhile, the buoyancy adjustment mechanism in conjunction with pectoral fins endows the robot with the capability of three-dimensional maneuverability. Kinematic and dynamic analyses are further conducted to reveal the interactive hydrodynamic forces. Regarding the locomotion control method, a bio-inspired central pattern generator-based controller is adopted to achieve multimodal swimming. In particular, two kinds of turning maneuvers are implemented and discussed. Aquatic experiments, including straight swimming, circular turning, and nearly static pitching validate the effectiveness of proposed mechatronic design and locomotion control methods. Remarkably, CasiTuna achieved a peak forward speed of 0.8 m/s (corresponding to 1.52 body lengths per second) and a minimum turning radius of less than 0.3 body lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.