Abstract

This paper presents a design of a three-fingered robotic hand driven by active and passive tendons and proposes control methods for this hand. The tendon-driven robotic hand consists of the thumb, the index and the middle fingers. The robotic thumb can move all the joints independently. In contrast, the index and the middle robotic fingers are under-actuated using the combination of active and passive tendons, and move the terminal two joints synchronously, which is one of the important features of the human digits. We present passivity-based impedance and force controllers for tendon-driven robotic fingers and discuss how to combine them for fast and secure grasps. We experimentally validate that the robotic hand moves fast and manipulates an object and demonstrate that the robotic hand grasps objects in diverse ways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call