Abstract

Multi-robot cooperative object transport on uneven roads is challenging. The key barrier is dealing with nonholonomic and rigid-formation motion constraints. In this study, to alleviate the influence of these constraints on a multi-robot cooperative transport system (MRCTS), a six degree-of-freedom connector capable of sensing three-axial displacements, three-axial forces, and three-axial angular displacements is designed and employed. Based on the local displacements derived from each connector, we develop a position calibration method to calculate the relative position of each robot and achieve a centralized control strategy. Based on the forces sensed by each connector, we design a decentralized control strategy to accomplish cooperative transport in which a leader robot guides the follower robots toward a destination by applying forces, instead of centralized information broadcasting. The experimental results show that the MRCTS works well on an uneven surface, and the tracking errors are within the design stroke of the connectors, demonstrating the effectiveness of the design and control methods of the MRCTS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call