Abstract

The use of the fast steering mirror in an optical path requires strict volume control, and traditional structures have low space-utilization efficiency, resulting in traditional actuators having limited output in narrow spaces. The design in this paper adopts a combination of flexible universal supports and piezoelectric ceramic actuators, greatly reducing the layout space of the rotating-shaft system. We accurately model the design structure and develop closed-loop control methods to further improve the closed-loop control accuracy of the system. The experimental results indicate that the developed control method effectively improves the response speed and bandwidth and thus has good potential for use in engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.