Abstract

The design and control of a novel piezoelectric actuated compliant microgripper is studied in this paper to achieve fast, precise, and robust micro grasping operations. First, the microgripper mechanism was designed to get a large jaw motion stroke. A three-stage flexure-based amplification composed of the homothetic bridge and leverage mechanisms was developed and the key structure parameters were optimized. The microgripper was manufactured using the wire electro discharge machining technique. Finite element analysis and experimental tests were carried out to examine the performance of the microgripper mechanism. The results show that the developed microgripper has a large amplification factor of 22.6. Dynamic modeling was conducted using experimental system identification, and the displacement and force transfer functions were obtained. The position/force switching control strategy was utilized to realize both precision position tracking and force regulation. The controller composed of an incremental proportional-integral-derivative control and a discrete sliding mode control with exponential reaching law was designed based on the dynamic models. Experiments were performed to investigate the control performance during micro grasping process, and the results show that the developed compliant microgripper exhibits good performance, and fast and robust grasping operations can be realized using the developed microgripper and controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.