Abstract
This manuscript reports on the plant-wide design and control of a biodiesel process using a sugar catalyst. This catalyst is less expensive and more environmentally friendly than the conventional catalyst because it does not have to be neutralized and there is no resulting waste salt. Also, the acid catalyst can be used for simultaneous esterification of free fatty acids (FFA) and transesterification of triglyceride because there is no concern about the formation of soap, which is a problem with the conventional base catalyst. Two issues are addressed in this work. The first one is to find the effect of FFA content in oil feed to the optimal design of this process. The second one is to investigate the operability of the proposed process. The results show that total annual cost of the plant-wide process is not significantly changed when the FFA content greater than 15wt%. As compared to a two-step process in literature, the energy consumption per tons of biodiesel production of our proposed process gives significant 65.8% saving for an oil feed with 5wt% FFA. Dynamic simulations demonstrate that the proposed process can accommodate production rate and feed composition changes using a decentralized plant-wide control structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Taiwan Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.