Abstract

A new lightweight six-legged robot that uses a simple mechanism and can move and work with high efficiency has been developed. This robot consists of two leg-bases with three legs each, and walks by moving each leg-base alternately. These leg-bases are connected to each other with a 6 degrees of freedom (DOF) mechanism. While designing this robot, the output force, velocity, and workspace of various connection mechanisms were compared, and the results showed that good performance could be achieved with a serial/parallel hybrid mechanism. The serial/parallel hybrid mechanism consists of three 6-DOF serially linked arms positioned with radial symmetry about the center of each leg-bases each leg-base is composed of two active and four passive joints. Walking experiments with this robot confirmed that this mechanism has satisfactory performance not only as a walking robot, but also as an active walking platform. Furthermore, in this robot, the entire leg-drive mechanism acts as a 6-axis force sensor, and individual sensors at the feet are not necessary. The forces and moments can be calculated from the changes in the joint angles. Experiments conducted verified that smooth contact with the ground by the swing-leg and successful switching from swing to support leg can be achieved using this force control and force measurement method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.