Abstract

Molecular beacons are typically water-soluble molecules that can convert specific chemical reactions or binding events into measurable optical signals, providing a noninvasive means to help understand cellular and subcellular activities at the molecular level. However, the soluble form of the current molecular beacon design often leads to their poor stability and facile degradation by nonspecific enzymes, and as a result, this undesired activation could give rise to false signals and thus poses a limitation for accurate detection of enzymatic activities. Here we report a proof-of-concept design and synthesis of a new type of supramolecular nanobeacon that is resistant to nonspecific enzymatic degradation in the self-assembled state but can be effectively cleaved by the target enzyme in the monomeric form. Our results show that the nanobeacon with a GFLG peptide linker could serve as an indicator for the presence of a lysosomal enzyme, cathepsin B.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.