Abstract

Transition metal sulfides and selenides are common electrode materials in supercapacitors. However, the slow redox kinetics and structural collapse during charge-discharge cycles of single-component materials have impeded their electrochemical performance. In this study, hollow Co9S8 nanotubes were synthesized through a rational morphology design approach. Subsequently, NiSe2 or Co0.85Se was electrodeposited onto the Co9S8 nanotubes, yielding two core-shell heterostructure arrays, namely, NiSe2@Co9S8 and Co0.85Se@Co9S8. By fully leveraging the advantages and synergistic effects of these dual-phase heterostructures, the NiSe2@Co9S8 and Co0.85Se@Co9S8 configurations demonstrated outstanding areal capacitances of 12.54 F cm-2 and 9.61 F cm-2, respectively, at 2 mA cm-2. When integrated with activated carbon in hybrid supercapacitors, the NiSe2@Co9S8//AC and Co0.85Se@Co9S8//AC devices exhibited excellent energy storage performance, with energy densities of 0.959 mW h at 1.681 mW and 0.745 mW h at 1.569 mW, respectively. Additionally, these hybrid supercapacitors demonstrated remarkable cycling stability, with capacitance retention of 87.5% and 89.5% after 5000 cycles for NiSe2@Co9S8//AC and Co0.85Se@Co9S8//AC, respectively. This study provides a novel approach to the synthesis of multiphase core-shell heterostructures based on metal sulfides and selenides, opening new avenues for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.