Abstract

In this study the design and construction of an ultrawideband backward wave directional coupler is presented. The symmetric, non-uniform coupler covers the frequency range from 2 to 50 GHz with an average coupling of 16.6±2.4 dB while establishing directivity values greater than 10 dB from 10 MHz to 33.8 GHz and 8 dB up to 48.4 GHz. The design is based on coupled microstrip lines suitable for integration into planar front end modules of modern measurement systems. To account for the dispersive behaviour of such waveguides, wiggly-line technique is utilised. Accurate extraction of the waveguide frequency-dependent distributed equivalent circuit parameters is done by 2D finite element electromagnetic field (EM) simulation. To balance out the remaining mistuning appropriate scaling parameters are introduced. The influence of common manufacturing and assembly tolerances on the device performance is analysed. Measurement results of the synthesised coupler with planar matched isolated port are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.