Abstract

Natural biopolymer-based hydrogels especially agarose and collagen gels, considering their biocompatibility with cells and their capacity to mimic biological tissues, have widely been used for in-vitro experiments and tissue engineering applications in recent years; nevertheless their mechanical properties are not always optimal for these purposes. Regarding the importance of the mechanical properties of hydrogels, many mechanical characterization studies have been carried out for such biopolymers. In this work, we have focused on understanding the mechanical role of agarose and collagen concentration on the hydrogel strength and elastic behavior. In this direction, Amirkabir Magnetic Bead Rheometry (AMBR) characterization device equipped with an optimized electromagnet, was designed and constructed for the measurement of hydrogel mechanical properties. The operation of AMBR set-up is based on applying a magnetic field to actuate magnetic beads in contact with the gel surface in order to actuate the gel itself. In simple terms the magnetic beads leads give rise to mechanical shear stress on the gel surface when under magnetic influence and together with the associated bead-gel displacement it is possible to calculate the hydrogel shear modulus. Agarose and Collagen gels with respectively 0.2–0.6 wt % and 0.2–0.5 wt % percent concentrations were prepared for mechanical characterization in terms of their shear modulus. The shear modulus values for the different percent concentrations of the agarose gel were obtained in the range 250–650 Pa, indicating the shear modulus increases by increasing in the agar gel concentration. In addition to this, the values of shear modulus for the collagen gel increase as function of concentration in the range 240–520 Pa in accordance with an approximately linear relationship between collagen concentration and gel strength.

Highlights

  • ObjectivesThe grand aim of the present study is to characterize the mechanical properties of elastic polymeric hydrogels in a non-destructive fashion

  • Biological tissues are of great importance in mechano-transduction studies because they that provide the mechanical microenvironment for cells

  • The specific design of an optimized electromagnet equipped to a conical-shaped core tip, cause to generation of high intensity focused magnetic fields in the vicinity of the magnetic bead leading to the application of magnetic forces with tens of μN magnitude to actuate magnetic beads in contact with the gel surface in order to actuate the gel itself

Read more

Summary

Objectives

The grand aim of the present study is to characterize the mechanical properties of elastic polymeric hydrogels in a non-destructive fashion. The significant aim of this work is to characterize the mechanical properties of hydrogels in condition showing the most similarities to cell culture media

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.