Abstract

Engineering education is incomplete without laboratory practices. One of such laboratory equipment necessary for all engineering students to have hands-on in the course of their undergraduate studies is the heat exchanger. This work presents the detailed design and construction of a laboratory type double pipe heat exchanger that can be used both in the parallel and counter flow configuration. The heat exchanger was constructed using galvanized steel for both the tube and shell. Experiments were designed and carried out to test the performance of the heat exchangers. The heat exchanger performance characteristics (logarithm mean temperature difference (LMTD), heat transfer rate, effectiveness, and overall heat transfer coefficient) were obtained and compared for the two configurations. The LMTD tends to be relatively constant as the flow rate was increased for both the parallel and counter-flow configuration but with a higher value for the parallel flow configuration. The heat exchanger has a higher heat transfer rate, effectiveness, and overall heat transfer coefficient and therefore has more performance capability for the counter-flow configuration. The overall heat transfer coefficient increased as the flow rate increased for both configurations. Importantly, as a result of this project, Mechanical Engineering students can now have hands-on laboratory experience on how the double pipe heat exchanger works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call