Abstract

A compact UHF antenna has been presented in this paper for nanosatellite space mission. A square ground plane with slotted rectangular radiating element have been used. Coaxial probe feeding is used to excite. The rectangular slot of the radiating patch is responsible for resonating at lower UHF bands. One of the square faces of the nanosatellite structure works as the ground plane for the slotted radiating element. The fabricated prototype of the proposed antenna has achieved an impedance bandwidth (S11< -10dB) of 7.0 MHz (398 MHz– 405 MHz) with small size of 97 mm× 90 mm radiating element. The overall ground plane size is 100 mm × 100 mm × 0.5 mm. The proposed antenna has achieved a gain of 1.18 dB with total efficiency of 62.5%. The proposed antenna addresses two design challenges of nanosatellite antenna, (a) assurance of the placement of solar panel beneath the radiating element; (b) providing about 50% open space for solar irradiance to pass onto the solar panel, enabling the solar panel to achieve up to 93.95% of power under of normal conditions.

Highlights

  • With the advent of modern technology nanosatellites are flourishing a new dimension in space communication

  • CubeSats missions are rapidly evolving as viable platform for Earth and space science

  • The slotted radiating patch provides above 50% open space for light penetration while the solar panels are place in-between the antenna patch and ground plane

Read more

Summary

Introduction

With the advent of modern technology nanosatellites are flourishing a new dimension in space communication. To design an ultrahigh frequency (UHF) antenna, strategically integrated with solar cells and without mechanical deployment requirements, has become a big challenge for nanosatellite and antenna research.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.