Abstract

This paper describes the design, fabrication and commissioning of a single axis laminar shear box for use in seismic soil–structure interaction studies. A laminar shear box is a flexible container that can be placed on a shaking table to simulate vertical shear-wave propagation during earthquakes through a soil layer of finite thickness. The laminar shear box described in this paper was designed to overcome the base shear limitations of a small shaking table at The University of Western Ontario. The design details of the box are provided in addition to results of dynamic tests performed to commission the box. A synthetic clay comprising sodium bentonite mixed with diluted glycerin was used as the model soil and 1-G similitude theory was employed to maintain model to prototype similarity. The model soil was compacted into the container in lifts to achieve soil stiffness that increased with depth. A series of shaking table tests and numerical analyses that were performed to study the performance of the laminar box and non-linear seismic behavior of the model clay are described. The results of this study show that the laminar box does not impose significant boundary effects and is able to maintain 1-D soil column behavior. In addition, the dynamic behavior of the model clay during scaled model tests was found to be consistent with the behavior measured during cyclic laboratory tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call