Abstract

Abstract A design scheme of a static shaft turbofan engine is proposed to meet the requirements of light weight and large thrust weight ratio of small aeroengine. As the core component of stable combustion, the thermal protection problem of the mid-mounted combustion chamber is particularly prominent. This paper designs a mid-mounted combustion chamber configuration that combines gas film cooling and central combustion. The influence of structural parameters on combustion characteristics is explored by numerical simulation, and the theoretical design and numerical simulation is verified based on combustion test results. The results show that the flame shape of the mid-mounted combustion chamber conforms to the characteristics of central combustion. The combustion effect of the nozzle with spray angle of 45° and flow rate of 1.87 kg/h meets the requirements of secondary combustion of the static shaft turbofan engine, and the air inlet of the combustion liner effectively increases the thickness of the cooling gas film. The experimental results are in good agreement with the numerical simulation results, and the temperature of the combustion liner wall can be reduced effectively. The above research provides a theoretical basis for the combustion chamber design of small static shaft turbofan engines and a reference for the thermal protection methods of small aeroengine combustion chambers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call