Abstract

Human immunodeficiency virus (HIV) persists in lymph nodes and lymphoid tissues even during aggressive drug treatment, likely due to insufficient drug concentrations at this site. Therefore, to eliminate this residual virus, methods that enhance lymph node drug concentrations are currently being evaluated. Although enhanced drug concentrations in tissue have been achieved with drug-associated lipid nanoparticles, targeting these particles to CD4(+) cells may provide specific delivery of drug to HIV target cells and further enhance drug efficacy. We have evaluated four candidate peptides with reported binding specificity to CD4 for anchoring on lipid nanoparticle preparations previously shown to localize in lymph nodes. Terminal cysteine containing candidate peptides were conjugated to lipid nanoparticles through maleimide-linked phospholipids for targeting to CD4 cells. Using fluorescently labeled lipid nanoparticle binding to cells with varying degree of CD4 expression (CEMx174, Molt-4, Jurkat, and Ramos), we indentified two peptide sequences that provided CD4 selectivity to nanoparticles. These two peptide candidates on lipid nanoparticles bound to cells corresponding to the degree of CD4 expression and in a peptide dose dependent manner. Further, binding of these targeted lipid nanoparticles was CD4 specific, as pre-exposure of CD4(+) cells to anti-CD4 antibodies or free peptides inhibited the binding interactions. These results indicate targeting of lipid nanoparticles for specific binding to CD4 can be accomplished by tagging CD4 binding peptides with peptides, and these results provide a basis for further evaluation of this targeted delivery system to enhance antiviral drug delivery to CD4(+) HIV host cells, particularly those in lymph nodes and lymphoid tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call