Abstract
Nowadays, the chipless radio frequency identification (RFID) tag is attracting significant attention owing to its immense potential in tracking. However, most of the chipless tags are fabricated on hard printed circuit boards, and the wearable fabric-based chipless tag is still in the research stage. In this paper, a symmetrical 3rd L-shaped multi-resonator wearable chipless RFID tag is designed and screen-printed onto fabric. In order to investigate the influence of the non-uniform conductive layer on the signal transmission at high frequency, the surface and cross-sectional topographies of the printed conductive film are analyzed and the frequency response characteristics are simulated and measured. The obtained results show that the common fabric can be used as the substrate to screen print the L-shaped multi-resonators of the chipless RFID tag, and the quality of the screen printed line, especially a narrow line, significantly affects the radio frequency performance. For the screen-printed 3rd L-shaped stub resonators, the relative frequency shift compared with the simulation results are 0.99%, 0.88% and 2.26%, respectively. Generally, the surface morphology of fabric and screen-printed precision are critical in improving the performance of L-shaped multi-resonators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.