Abstract

This work deals with the proposal of a novel type of microstrip antenna, called MCPA the modified comb patch antenna. The proposed antennas is composed of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> parallel conductors, fed by a common microstrip. A dedicated mathematical framework, based on the multiconductors transmission line formalism, is proposed for antenna analysis and design. The analytical model is numerically validated with full-wave simulations, resulting in a 5% error in the predicted resonant patch length. A numerical study of antenna matching, size, radiation performance is carried out. The matching increases as the number of conductors increases, whilst gain of comb antennas made of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> conductors are about half dB higher than the equivalent full patch counterpart. Then, an eighty conductors was realized and measured to assess the frequency response of the antenna, as well as its radiation performances. An error of 1% between the predicted and measured value resonance frequency was observed. A difference of about 0.67dB was found for the measured maximum antenna gain, with respect to the simulated one. The proposed antenna design is appealing for printed electronics and wearable, on-textile applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.