Abstract

Semiconductor quantum dots (QDs) are a new generation of inorganic probes with advantageous properties over traditional organic-only probes for biological applications. A major hurdle in the use of QDs for biology is the inability of the hydrophobically synthesized QDs to interface with aqueous environments. There have been tremendous advances in the surface modification of hydrophobic QDs. However, none of the current techniques fits all of the criteria for an ideal QD coating for biological applications (e.g., maintain the small size and optical properties of QDs, have low nonspecific binding) while providing cost-effective, easy preparation on a large scale. We developed a highly stable biocompatible coating for the surface of ZnS-capped CdSe QDs that maintains all of the hydrophobic-coated QD optical properties. These QDs are prepared by first coating them with mercaptoundecanoic acid and are further cross-linked with the amino acid lysine in the presence of dicyclohexylcarbodiimide to form a stable h...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.