Abstract

We experimentally demonstrate the III-V nitrides as a high-performance photovoltaic material with open-circuit voltages up to 2.4V and internal quantum efficiencies as high as 60%. GaN and high-band gap InGaN solar cells are designed by modifying PC1D software, grown by standard commercial metal-organic chemical vapor deposition, fabricated into devices of variable sizes and contact configurations, and characterized for material quality and performance. The material is primarily characterized by x-ray diffraction and photoluminescence to understand the implications of crystalline imperfections on photovoltaic performance. Two major challenges facing the III-V nitride photovoltaic technology are phase separation within the material and high-contact resistances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.