Abstract

This paper describes the development of a facile and environmentally friendly strategy for supporting crotamine on gold nanoparticles (GNPs). Our approach was based on the covalent binding interaction between the cell penetrating peptide crotamine, which is a snake venom polypeptide with preference to penetrate dividing cells, and a polyethylene glycol (PEG) ligand, which is a nontoxic, water-soluble and easily obtainable commercial polymer. Crotamine was derivatized with ortho-pyridyldisulfide-polyethyleneglycol-N-hydroxysuccinimide (OPSS-PEG-SVA) cross-linker to produce OPSS-PEG-crotamine as the surface modifier of GNP. OPSS-PEG-SVA can serve not only as a surface modifier, but also as a stabilizing agent for GNPs. The successful PEGylation of the nanoparticles was demonstrated using different physicochemical techniques, while the grafting densities of the PEG ligands and crotamine on the surface of the nanoparticles were estimated using a combination of electron microscopy and mass spectrometry analysis. In vitro assays confirmed the internalization of these GNPs, into living HeLa cells. The results described herein suggest that our approach may serve as a simple platform for the synthesis of GNPs decorated with crotamine with well-defined morphologies and uniform dispersion, opening new roads for crotamine biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.