Abstract
In our continuing efforts to develop bivalent compounds as potential neuroprotectants for Alzheimer’s disease, a series of bivalent compounds that contain cholesterylamine and an extended spacer were synthesized and biologically characterized. Our results demonstrated that incorporation of a piperazine ring into the spacer composition significantly improved the protective potency in MC65 cell models. Our results also suggested that the optimal spacer length for such bivalent compounds ranges from 17 to 21 atoms, and further spacer extension beyond 21 atoms results no further optimization. Notably, incorporation of a piperazine ring into the spacer diminished the biometal chelating capacity for these bivalent compounds, thus suggesting structural flexibility of these compounds in interactions with metals. Collectively, the results provided valuable guidance to develop new bivalent compounds as neuroprotectants for Alzheimer’s disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.